- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Jeong, Chanseok (2)
-
Maharjan, Shashwat (2)
-
Pranto, Fazle Mahdi (2)
-
Guidio, Bruno (1)
-
Kim, Boyoung (1)
-
Schaal, Christoph (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pranto, Fazle Mahdi; Maharjan, Shashwat; Jeong, Chanseok (, Journal of Engineering Mechanics)We present a new convolutional neural network (CNN)-based element-wise classification method to detect a random number of voids in a 2D plain strain solid subjected to elastodynamics. We consider that an elastic wave source excites the solid including a random number of voids, and wave responses are measured by sensors placed around the solid. We present a CNN for resolving the inverse problem, which is formulated as an element-wise classification problem. The CNN is trained to classify each element into a regular or void element from measured wave signals. To this end, we generate training data consisting of input-layer features (i.e., measured wave signals at sensors) and output-layer features (i.e., element types of all elements). When the training data are generated, we utilize the level-set method to avoid an expensive re-meshing process, which is otherwise needed for each different configuration of voids. We also analyze how effectively the CNN performs on blind test data from a non-level-set wave solver that explicitly models the boundary of voids using an unstructured, fine mesh. Numerical results show that the suggested approach can detect the locations, shapes, and sizes of multiple elliptical and circular voids in the 2D solid domain in the test data set as well as a blind test data set.more » « less
An official website of the United States government
